31. $f(x)=(2 x-7)(4 x+6)=8 x^{2}-16 x-42$

$$
f^{l}(x)=16 x-16=16(x-1)
$$

32.

$$
\begin{aligned}
& f(x)=\left(5 x^{2}+3 x-2\right)\left(4 x^{4}+2 x^{2}+1\right) \\
& f^{\prime}(x)=(10 x+3)\left(4 x^{4}+2 x^{2}+1\right)+\left(16 x^{3}+4 x\right)\left(5 x^{2}+3 x-2\right)
\end{aligned}
$$

$$
f(x)=(4 x-5)^{2}(5 x+3)^{3}
$$

33. $f^{l}(x)=2(4 x-5) \cdot 4 \cdot(5 x+3)^{3}+3(5 x+3)^{2} \cdot 5 \cdot(4 x-5)^{2}$
$f^{l}(x)=(4 x-5)(5 x+3)^{2}[8(5 x+3)+15(4 x-5)]$
$f^{\prime}(x)=(4 x-5)(5 x+3)^{2}[100 x-51]$

$$
f(x)=(5 x+2)^{3}(7 x-5)^{4}
$$

34.

$$
\begin{aligned}
& f^{\prime}(x)=3(5 x+2)^{2} \cdot 5 \cdot(7 x-5)^{4}+4(7 x-5)^{3} \cdot 7 \cdot(5 x+2)^{3} \\
& f^{\prime}(x)=(5 x+2)^{2}(7 x-5)^{3}[15(7 x-5)+28(5 x+2)] \\
& f^{l}(x)=(5 x+2)^{2}(7 x-5)^{3}[245 x-19]
\end{aligned}
$$

$$
f(x)=\left(5 x^{2}+5\right)^{5}\left(3 x^{2}-1\right)^{6}
$$

$$
f^{l}(x)=5\left(5 x^{2}+5\right)^{4} \cdot 10 x \cdot\left(3 x^{2}-1\right)^{6}+6\left(3 x^{2}-1\right)^{5} \cdot 6 x \cdot\left(5 x^{2}+5\right)^{5}
$$

35. $f^{l}(x)=2 x\left(5 x^{2}+5\right)^{4}\left(3 x^{2}-1\right)^{5}\left[25\left(3 x^{2}-1\right)+18\left(5 x^{2}+5\right)\right]$
$f^{l}(x)=2 x\left(5 x^{2}+5\right)^{4}\left(3 x^{2}-1\right)^{5}\left[165 x^{2}-65\right]$
$f^{l}(x)=2 \cdot 5 x\left(5 x^{2}+5\right)^{4}\left(3 x^{2}-1\right)^{5}\left[33 x^{2}-13\right]$

$$
\begin{aligned}
& f(x)=\left(3 x^{4}-6\right)^{3}(5 x+4)^{-3} \\
& f^{l}(x)=3\left(3 x^{4}-6\right)^{2} \cdot 12 x^{3} \cdot(5 x+4)^{-3}+-3(5 x+4)^{-4} \cdot 5 \cdot\left(3 x^{4}-6\right)^{3} \\
& f^{\prime}(x)=3(5 x+4)^{-4}\left(3 x^{4}-6\right)^{2}\left[12 x^{3}(5 x+4)-5\left(3 x^{4}-6\right)\right]
\end{aligned}
$$

36. $f^{\prime}(x)=3(5 x+4)^{-4}\left(3 x^{4}-6\right)^{2}\left[45 x^{4}+48 x^{3}+30\right]$

$$
\begin{aligned}
& f^{\prime}(x)=3(5 x+4)^{-4} \cdot 3^{2}\left(x^{4}-2\right)^{2} \cdot 3\left[15 x^{4}+16 x^{3}+10\right] \\
& f^{\prime}(x)=\frac{3^{4}\left(x^{4}-2\right)^{2}\left[15 x^{4}+16 x^{3}+10\right]}{(5 x+4)^{4}}
\end{aligned}
$$

$$
f(x)=\left(4 x^{2}+3\right)^{-2}\left(x^{3}+1\right)^{-4}
$$

$$
f^{\prime}(x)=-2\left(4 x^{2}+3\right)^{-3} \cdot 8 x \cdot\left(x^{3}+1\right)^{-4}+-4\left(x^{3}+1\right)^{-5} \cdot 3 x^{2} \cdot\left(4 x^{2}+3\right)^{-2}
$$

37. $f^{l}(x)=-4 x\left(4 x^{2}+3\right)^{-3}\left(x^{3}+1\right)^{-5}\left[4\left(x^{3}+1\right)+3 x\left(4 x^{2}+3\right)\right]$
$f^{l}(x)=-4 x\left(4 x^{2}+3\right)^{-3}\left(x^{3}+1\right)^{-5}\left[16 x^{3}+9 x+4\right]$
$f^{l}(x)=\frac{-4 x\left[16 x^{3}+9 x+4\right]}{\left(4 x^{2}+3\right)^{3}\left(x^{3}+1\right)^{5}}$

$$
f(x)=\ln \left(4 x^{7}\right)
$$

38. $f^{\prime}(x)=\frac{1}{4 x^{7}} \cdot 28 x^{6}=\frac{7}{x}$

$$
f(x)=(\ln 6 x)^{2}
$$

40.

$$
f^{\prime}(x)=2(\ln 6 x) \cdot \frac{1}{6 x} \cdot 6=\frac{2(\ln 6 x)}{x}
$$

$$
f(x)=(2 x+1) \ln x
$$

42.

$$
f^{l}(x)=2 \ln x+\frac{1}{x}(2 x+1)
$$

$$
f(x)=\ln x^{2}(5 x+2)^{3}
$$

43. $f^{\prime}(x)=\frac{1}{x^{2}} \cdot 2 x \cdot(5 x+2)^{3}+3(5 x+2)^{2} \cdot 5 \cdot \ln x^{2}$

$$
f^{\prime}(x)=(5 x+2)^{2}\left[\frac{2(5 x+2)}{x}+15 \ln x^{2}\right]
$$

$$
f(x)=\ln \left[(4 x-2)^{2}(5 x+2)^{3}\right]
$$

$$
f^{l}(x)=\frac{1}{\left[(4 x-2)^{2}(5 x+2)^{3}\right]} \cdot\left[2(4 x-2) \cdot 4 \cdot(5 x+2)^{3}+3(5 x+2)^{2} \cdot 5 \cdot(4 x-2)^{2}\right]
$$

44.

$$
f^{l}(x)=\frac{1}{\left[(4 x-2)^{2}(5 x+2)^{3}\right]} \cdot(4 x-2)(5 x+2)^{2}[8(5 x+2)+15(4 x-2)]
$$

$$
f^{l}(x)=\frac{[100 x-14]}{\left[(4 x-2)(5 x+2)^{2}\right]}=\frac{2[50 x-7]}{\left[(4 x-2)(5 x+2)^{2}\right]}
$$

$$
f(x)=\ln \left(3 x^{4}+2 x^{2}-5\right)^{3}
$$

45. $f^{l}(x)=\frac{1}{\left(3 x^{4}+2 x^{2}-5\right)^{3}} \cdot 3\left(3 x^{4}+2 x^{2}-5\right)^{2} \cdot\left(12 x^{3}+4 x\right)$

$$
f^{\prime}(x)=\frac{3 \cdot 4 x \cdot\left(3 x^{2}+1\right)}{\left(3 x^{4}+2 x^{2}-5\right)}
$$

$$
f^{l}(x)=\frac{1}{(6 x)^{2}} \cdot 2(6 x) \cdot 6=\frac{2}{x}
$$

41. $f^{\prime}(x)=\frac{1}{(6 x)^{2}} \cdot 2(6 x) \cdot 6=\frac{2}{x}$

$$
f(x)=\ln 5 x^{3}
$$

39. $f^{l}(x)=\frac{1}{5 x^{3}} \cdot 15 x^{2}=\frac{3}{x}$

$$
f(x)=\ln (6 x)^{2}
$$

$$
f(x)=6^{(4 x+5)^{2}(6 x-1)}
$$

48.

$$
f^{l}(x)=6^{(4 x+5)^{2}(6 x-1)} \cdot \ln 6 \cdot\left[2(4 x+5)(6 x-1)+6(4 x+5)^{2}\right]
$$

$$
f^{l}(x)=6^{(4 x+5)^{2}(6 x-1)} \cdot \ln 6 \cdot 2 \cdot(4 x+5)[18 x+14]
$$

$$
f^{l}(x)=6^{(4 x+5)^{2}(6 x-1)} \cdot \ln 6 \cdot 2 \cdot(4 x+5) \cdot 2 \cdot[9 x+7]
$$

$$
f(x)=4^{\left(5 x^{2}-2 x+1\right)^{3}}
$$

49. $f^{l}(x)=4^{\left(5 x^{2}-2 x+1\right)^{3}} \cdot \ln 4 \cdot 3\left(5 x^{2}-2 x+1\right)^{2} \cdot(10 x-2)$

$$
f^{l}(x)=4^{\left(5 x^{2}-2 x+1\right)^{3}} \cdot \ln 4 \cdot 3\left(5 x^{2}-2 x+1\right)^{2} \cdot 2(5 x-1)
$$

50. $f(x)=e^{\left(6 x^{3}-5 x\right)}$

$$
\begin{aligned}
& f^{l}(x)=e^{\left(6 x^{3}-5 x\right)} \cdot\left(18 x^{2}-5\right) \\
& f(x)=5^{(2 x+3)} \ln (2 x+3)
\end{aligned}
$$

51. $f^{\prime}(x)=5^{(2 x+3)} \cdot \ln 5 \cdot 2 \cdot \ln (2 x+3)+\frac{1}{(2 x+3)} \cdot 2 \cdot 5^{(2 x+3)}$

$$
\begin{aligned}
& f^{\prime}(x)=5^{(2 x+3)} \cdot 2 \cdot\left[\ln 5 \cdot \ln (2 x+3)+\frac{1}{(2 x+3)}\right] \\
& f(x)=\ln (5 x-3)^{2} e^{(3 x-5)}
\end{aligned}
$$

52. $f^{\prime}(x)=\frac{1}{(5 x-3)^{2}} \cdot 2(5 x-3) \cdot 5 \cdot e^{(3 x-5)}+e^{(3 x-5)} \cdot 3 \cdot \ln (5 x-3)^{2}$

$$
f^{l}(x)=e^{(3 x-5)}\left[\frac{10}{(5 x-3)}+3 \cdot \ln (5 x-3)^{2}\right]
$$

53.

$$
\begin{aligned}
& f(x)=(3 x+2)^{2}(5 x-1)^{3}(x+6)^{2} \\
& f^{l}(x)=2(3 x+2) \cdot 3 \cdot(5 x-1)^{3}(x+6)^{2}+3(5 x-1)^{2} \cdot 5 \cdot(3 x+2)^{2}(x+6)^{2}+2(x+6) \cdot(3 x+2)^{2}(5 x-1)^{3} \\
& f^{\prime}(x)=(3 x+2)(5 x-1)^{2}(x+6)[6(5 x-1)(x+6)+15(3 x+2)(x+6)+2(3 x+2)(5 x-1)]
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=\frac{(5 x+2)^{2}}{(4 x+1)} \\
& f^{\prime}(x)=\frac{2(5 x+2) \cdot 5 \cdot(4 x+1)-4(5 x+2)^{2}}{[(4 x+1)]^{2}}
\end{aligned}
$$

54.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{2(5 x+2)[5(4 x+1)-2(5 x+2)]}{[(4 x+1)]^{2}} \\
f^{l}(x) & =\frac{2(5 x+2)[10 x+1]}{[(4 x+1)]^{2}}
\end{aligned}
$$

$$
f(x)=\frac{\left(5 x^{3}+2 x-5\right)^{4}}{\left(4 x^{2}+3\right)^{2}}
$$

$$
f^{\prime}(x)=\frac{4\left(5 x^{3}+2 x-5\right)^{3} \cdot\left(15 x^{2}+2\right) \cdot\left(4 x^{2}+3\right)^{2}-2\left(4 x^{2}+3\right) \cdot 8 x \cdot\left(5 x^{3}+2 x-5\right)^{4}}{\left[\left(4 x^{2}+3\right)^{2}\right]^{2}}
$$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{4\left(5 x^{3}+2 x-5\right)^{3}\left(4 x^{2}+3\right)\left[\left(15 x^{2}+2\right)\left(4 x^{2}+3\right)-4 x\left(5 x^{3}+2 x-5\right)\right]}{\left(4 x^{2}+3\right)^{4}} \\
& f^{\prime}(x)=\frac{4\left(5 x^{3}+2 x-5\right)^{3}\left[40 x^{4}+43 x^{2}+20 x+6\right]}{\left(4 x^{2}+3\right)^{3}}
\end{aligned}
$$

$$
f(x)=\frac{\ln (5 x-2)^{3}}{5^{5 x-1}}
$$

56. $f^{l}(x)=\frac{\frac{1}{(5 x-2)^{3}} \cdot 3(5 x-2)^{2} \cdot 5 \cdot 5^{5 x-1}-5^{5 x-1} \cdot \ln 5 \cdot 5 \cdot \ln (5 x-2)^{3}}{\left[5^{5 x-1}\right]^{2}}$

$$
f^{\prime}(x)=\frac{5^{5 x-1} \cdot 5 \cdot\left[\frac{3}{(5 x-2)}-\ln 5 \cdot \ln (5 x-2)^{3}\right]}{\left[5^{5 x-1}\right]^{2}}=\frac{5 \cdot\left[\frac{3}{(5 x-2)}-\ln 5 \cdot \ln (5 x-2)^{3}\right]}{5^{5 x-1}}
$$

$$
\begin{aligned}
& f(x)=\frac{3^{x^{3}+2 x}}{e^{\ln x}} \\
& f^{l}(x)=\frac{3^{x^{3}+2 x} \cdot \ln 3 \cdot\left(3 x^{2}+2\right) \cdot e^{\ln x}-e^{\ln x} \cdot \frac{1}{x} \cdot 3^{x^{3}+2 x}}{\left[e^{\ln x}\right]^{2}}
\end{aligned}
$$

57.

$$
\begin{aligned}
& f^{\prime}(x)=e^{\ln x} \cdot 3^{x^{3}+2 x} \cdot \frac{\left[\ln 3 \cdot\left(3 x^{2}+2\right)-\frac{1}{x} \cdot\right]}{\left[e^{\ln x}\right]^{2}} \\
& f^{\prime}(x)=3^{x^{3}+2 x} \cdot \frac{\left[\ln 3 \cdot\left(3 x^{2}+2\right)-\frac{1}{x} \cdot\right]}{e^{\ln x}}
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=\frac{e^{\left(4 x^{2}-7 x\right)}}{\sqrt[4]{6 x^{3}-7 x+1}}=e^{\left(4 x^{2}-7 x\right)} \cdot\left(6 x^{3}-7 x+1\right)^{\frac{-1}{4}} \\
& f^{l}(x)=e^{\left(4 x^{2}-7 x\right)} \cdot(8 x-7) \cdot\left(6 x^{3}-7 x+1\right)^{\frac{-1}{4}}+\frac{-1}{4}\left(6 x^{3}-7 x+1\right)^{\frac{-5}{4}} \cdot\left(18 x^{2}-7\right) \cdot e^{\left(4 x^{2}-7 x\right)}
\end{aligned}
$$

58.

$$
\begin{aligned}
& f^{l}(x)=e^{\left(4 x^{2}-7 x\right)} \cdot\left(6 x^{3}-7 x+1\right)^{\frac{-5}{4}}\left[(8 x-7)\left(6 x^{3}-7 x+1\right)-\frac{1}{4}\left(18 x^{2}-7\right)\right] \\
& f^{l}(x)=\frac{e^{\left(4 x^{2}-7 x\right)}}{\left(6 x^{3}-7 x+1\right)^{\frac{5}{4}}} \cdot\left[(8 x-7)\left(6 x^{3}-7 x+1\right)-\frac{1}{4}\left(18 x^{2}-7\right)\right]
\end{aligned}
$$

$$
f(x)=\frac{\log _{4}\left(x^{2}+5 x-1\right)}{\ln ^{2}\left(x^{3}-5\right)}
$$

59.

$$
f^{\prime}(x)=\frac{\frac{1}{\left(x^{2}+5 x-1\right) \ln 4} \cdot(2 x+5) \cdot \ln ^{2}\left(x^{3}-5\right)-2 \ln \left(x^{3}-5\right) \cdot \frac{1}{\left(x^{3}-5\right)} \cdot 3 x^{2} \cdot \log _{4}\left(x^{2}+5 x-1\right)}{\left[\ln ^{2}\left(x^{3}-5\right)\right]^{2}}
$$

$$
f(x)=\log _{7}(4 x-3)^{5} \sqrt[3]{\ln \left(x^{3}-5\right)}=\log _{7}(4 x-3)^{5}\left(\ln \left(x^{3}-5\right)\right)^{\frac{1}{3}}
$$

60. $f^{l}(x)=\frac{1}{(4 x-3)^{5} \cdot \ln 7} \cdot 5(4 x-3)^{4} \cdot 4 \cdot\left(\ln \left(x^{3}-5\right)\right)^{\frac{1}{3}}+\frac{1}{3}\left(\ln \left(x^{3}-5\right)\right)^{\frac{-2}{3}} \cdot \frac{1}{\left(x^{3}-5\right)} \cdot 3 x^{2} \cdot \log _{7}(4 x-3)^{5}$

$$
f^{\prime}(x)=\frac{1}{(4 x-3) \cdot \ln 7} \cdot 5 \cdot 4 \cdot\left(\ln \left(x^{3}-5\right)\right)^{\frac{1}{3}}+\left(\ln \left(x^{3}-5\right)\right)^{\frac{-2}{3}} \cdot \frac{1}{\left(x^{3}-5\right)} \cdot x^{2} \cdot \log _{7}(4 x-3)^{5}
$$

